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Abstract
A two-dimensional circular quantum billiard with unusual boundary conditions
introduced by Berry and Dennis (2008 J. Phys. A: Math. Theor. 41 135203)
is considered in detail. It is demonstrated that most of its eigenfunctions are
strongly localized and the corresponding eigenvalues are close to eigenvalues
of the circular billiard with Neumann boundary conditions. Deviations from
strong localization are also discussed. These results agree well with numerical
calculations.

PACS numbers: 03.65.Ge, 05.45.Mt, 03.65.Sq

1. Introduction

It is common to consider a quantum problem as integrable (but not necessarily separable)
or chaotic, depending solely on the properties of its classical counterpart. For example, the
quantum circular billiard is integrable because classical mechanics inside a circle is integrable.
In such an approach one does not even specify the exact form of boundary conditions, which
are indispensable for the existence of discrete spectrum in quantum billiards. Often this
approach is correct; for example, a circular billiard remains integrable for both Dirichlet and
Neumann boundary conditions. Nevertheless, it is known that this is not always the case.
A notable example is a rectangular billiard with Dirichlet conditions imposed on part of the
boundary, and Neumann conditions on the complimentary part (e.g. [1] and references therein).
Though the rectangular billiard is classically integrable, this version of the quantum problem
is neither integrable nor chaotic and, in fact, has many features in common with classically
pseudointegrable systems. In particular, in [1] it was shown that the eigenfunctions of such
systems have a strong resemblance with integrable eigenfunctions whose quantization gives
the positions of the energy levels with reasonably good precision.
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Recently, a different system with similar properties was introduced in [2]. The problem
consists in finding eigenfunctions and eigenvalues for the Helmholtz equation in polar
coordinates [2]

(� + k2)�(r, φ) = 0 (1.1)

with Robin boundary conditions (mixed boundary conditions) on the circle of radius R:

∂

∂r
�(r, φ)|r=R = Af (φ)�(R, φ). (1.2)

When the boundary function f (φ) is a constant, the problem remains integrable (e.g. [3]).
New phenomena appear when

• f (φ) is a smooth function of the polar angle φ;
• the prefactor A is not a constant but is proportional to the momentum k.

In [2] the case

f (φ) = cos φ (1.3)

and A = k was briefly considered. Figure 7 of that paper shows an eigenfunction with
energy E = 97.206 986 712 which looks like the (slightly shifted) standard Bessel function
with azimuthal quantum number 8 and radial quantum number 6. The 6th zero of J ′

8(x)

is x0 = 27.889 2694, corresponding to energy E0 ≡ x2
0/8 = 97.226 418 653. Compared

with the unit mean distance between levels, the difference between these is rather small:
E − E0 = −0.019 43.

The purpose of this paper is to show that this is not a coincidence. We argue that almost
all energy levels of the problem (1.1)–(1.3) are close to eigenvalues of the circular billiard
with Neumann boundary conditions

J ′
m(x) = 0. (1.4)

The corresponding wavefunctions look, roughly speaking, like the usual Bessel function
solutions to (1.1) but slightly shifted with respect to the circle centre.

The main reason for such behaviour is the strong localization of wavefunctions. Namely,
the recurrence relation determining the eigenfunction coefficients (see equation (2.2)), is
equivalent to the one-dimensional discrete Schrödinger equation with a pseudo-random
distribution of on-site energies. If these energies were truly random, this problem would
correspond to Anderson localization in one dimension [5–7] for which all states are localized.
Though the energy distribution is deterministic in our problem, it has strong pseudo-random
properties, and many of the predictions of localization theory remain valid.

The plan of the paper is the following. In section 2, the formal solution of the problem
in terms of recurrent relations derived in [2] is discussed. Properties of the pseudo-random
energy distribution and its relation with the Lloyd model of the product of random matrices are
investigated, and the localization length is discussed. Properties of strongly localized states
and the construction of a local perturbation theory are treated in section 3. States which are
localized close to the boundaries of the allowed region differ from strongly localized states.
In section 4, states with large azimuthal number are shown to be adequately described by a
continuous semiclassical approximation, whose approximate quantization condition is derived
in section 5. As for any dynamical model, the construction of the semiclassical trace formula
is of interest, and this is done for our model in section 6. We conclude in section 7. Details of
longer calculations are given in the appendices.
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2. Localization

The solution of the above problem may be written as the following formal series [2]:

�(r, φ) =
∞∑

m=0

Jm(kr)

Jm(x)
am

{
cos mφ

sin mφ

}
, (2.1)

where x = kR and cos mφ (resp. sin mφ) are chosen for states symmetric (resp. antisymmetric)
with respect to the symmetry transformation φ → −φ.

The boundary conditions (1.2) and (1.3) are fulfilled provided the coefficients am obey
the recurrence relations [2]

2ρm(x)am = am+1 + am−1, (2.2)

where

ρm(x) = J ′
m(x)

Jm(x)
(2.3)

for all m = 0, 1, 2, . . . . The initial values may be chosen as follows [2]:

a0 = 1, a1 = ρ0(x), (2.4)

for symmetric functions and

a0 = 0, a1 = 1 (2.5)

for antisymmetric ones.
For integrable models such as the circular billiard with Neumann boundary conditions,

only one term in the series (2.1) is non-zero. For chaotic problems like the stadium billiard,
all coefficients are non-zero, and in the mean the numbers am/Jm(x) can be considered as
independent Gaussian random variables [4]. Below we demonstrate that for our problem,
almost all states are localized. This means that one coefficient am is much larger than all the
others which, roughly speaking, decrease exponentially from the centre of localization.

It is evident that the recursion relations (2.2) define the discrete Schrödinger equation and
can be rewritten in the form of the transfer matrix(

am+1

am

)
=

(
2ρm −1

1 0

) (
am

am−1

)
. (2.6)

In the semiclassical approximation x → ∞ and m < x, ρm can be approximated by using the
standard asymptotics of the Bessel functions [8]

Jm(x) ≈
√

2

π
(x2 − m2)−1/4 cos �m(x), (2.7)

where

�m(x) =
√

x2 − m2 − m arccos
m

x
− π

4
. (2.8)

Thus

ρm(x) ≈ −
√

1 − m2

x2
tan(�m(x)). (2.9)

If, for all m,�m(x) are independent random variables distributed uniformly between 0 and π ,
the variables ρm(x) are independent random variables with the Cauchy distribution

P(ρ) = w

π(ρ2 + w2)
, (2.10)
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Figure 1. (a) Logarithm of modulus of the coefficients am versus m for the deterministic model
(2.14) with θ = π

√
5/4 (the upper solid line) and for one realization of the Lloyd model (2.10)

with w = 2 sin θ (the lower solid line). For clarity the upper curve is shifted by 5 units. The
dashed line is the Lloyd model prediction y = λ̄m where λ̄ is the Lyapunov exponent given by
(2.13). (b) Distribution of the Lyapunov exponent for 100 realizations of the Lloyd model with the
length L = 100 and parameters the same as in (a). The dashed line is the Gaussian distribution
with parameters (2.13) and (2.15).

with

w =
√

1 − m2/x2. (2.11)

In such a case, equation (2.6) determines the soluble Lloyd model [9] of the product of random
matrices, for which it is known that for almost all initial conditions the Lyapunov exponent of
the product, defined by

λ = lim
m→∞

ln
√

a2
m + a2

m−1

m
, (2.12)

is non-zero, and for the distribution (2.10) its value is given by [10]

λ̄ = ln (w +
√

1 + w2). (2.13)

In parallel with the Lloyd model we also consider a closely related deterministic model
(sometimes called the Maryland model [18]) defined by the same recursion relations (2.2), but
with the function

ρm = sin(θ) tan(mθ) (2.14)

with a certain constant θ . When θ is a ‘good’ irrational multiple of π , this model should have
properties close to the Lloyd model. In particular, the Lyapunov exponent is given by (2.13).
These two models are compared in figure 1(a). On the other hand, when θ/π is rational (or
irrational but with a good rational approximation), the situation differs considerably from a
random model (see e.g. [12]).

The Lyapunov exponent (2.12) is a self-averaged quantity only in the limit m → ∞.
For a finite sample length (i.e. large but finite m � L), it is a random variable with a certain
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distribution. In [11] it was shown that this distribution in the Lloyd model is Gaussian with
mean λ̄ and variance approximately given by

σ 2 ≈ 2λ̄

L
. (2.15)

In figure 1(b), the distribution of the Lyapunov exponents for the Lloyd model with L = 100
is shown. For a given realization of a random sequence, the Lyapunov exponent with finite L
has a certain value, but the mean value and variance over many realizations agree well with
(2.13) and (2.15).

When boundary conditions for the Schrödinger equation are imposed at large distances,
almost all eigenstates are localized and for one-dimensional systems the localization length l
equals the inverse of the Lyapunov exponent [19]

l = 1

λ
. (2.16)

For the Cauchy distribution with the width defined by (2.11), the local localization length is

l(t) = (
ln

(√
1 − t2 +

√
2 − t2

))−1
(2.17)

with t = m/x where m is the centre of localization and x is the eigen-momentum. For a large
range of m/x, the localization length is close to 1 (e.g. for m = 0.5x, l̄ = 1.28) but near
m = x it diverges.

Of course, this statement is valid only for the pure random Lloyd model with the width
as in (2.11). In our case, the phases �m(x) in (2.8) are not random, but rather quickly varying
functions of m. First of all, the oscillatory asymptotics of the Bessel functions (2.7) are valid
only when

|m| < x. (2.18)

Therefore, wavefunctions with eigen-momentum x (if any exist) can be localized only in the
interval

0 < m < x. (2.19)

Second, within this interval, the best one can expect is that the phases (2.8) are pseudo-random,
provided that their derivative over m is not a rational multiple of π, nor too close to one. This
means that in regions where

∂

∂m
�m(x) ≡ −arccos

m

x
= M

N
π (2.20)

one cannot expect good localization of eigenfunctions.
Nevertheless, for most values of m, the phases (2.8) are pseudo-random when considered

modulo π (cf [13]), and it is natural to assume that wavefunctions obeying (2.2) are localized
(at least in a certain interval of m).

In figure 2, the absolute values of the coefficients am corresponding to an eigenvalue are
presented on the logarithmic scale. It is clear that they correspond to an eigenstate localized
at m = 9 and decaying exponentially from this point with the localization length close to
the one given by equation (2.17). When the momentum is even slightly different from a true
eigenvalue, the coefficients grow exponentially from this point.

3. Strongly localized states

We will call states localized at a certain point m∗, not too close to the boundary 0 and x,
strongly localized states. As the localization length l is of order 1, in general, these states
consist of one large component am∗ and all other components have to be small:

|am| ∼ e−|m−m∗|/l . (3.1)
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Figure 2. Natural logarithm of coefficient modulus ln |am| versus m for a symmetric eigenvalue
with x ≈ 32.503 026 94 (black circles) and for x ≈ 32.505 247 35 corresponding to a zero of J ′

9(x)

(open squares). Dashed lines have the slopes given by expression (2.17) with m = 9.

Therefore, it is natural to develop a perturbation series on the number of amplitudes in the
vicinity of m∗.

We assume that all coefficients except the one with m = m∗ are zero and am∗ = 1. Then
from the recurrence relations (2.2), it follows that the eigenvalue x∗ has to be a zero of the
derivative of the Bessel function with m = m∗,

J ′
m∗(x

∗) = 0. (3.2)

The next approximation consists of taking into account terms with m = m∗ ± 1, which leads
to the 3 × 3 equation⎛

⎝−2ρm∗−1(x) 1 0
1 −2ρm∗(x) 1
0 1 −2ρm∗+1(x)

⎞
⎠

⎛
⎝a−1

1
a+1

⎞
⎠ = 0. (3.3)

Of course, this and the following equations can be solved numerically, but it is more convenient
to perform some calculations beforehand. We shall see that solutions of any of these equations
lead to x close to x∗ from (3.2). Therefore, one has to know the values of Jm∗+k(x

∗) and
J ′

m∗+k(x
∗). From standard recursion relations for the Bessel functions [8],

zJ ′
n(z) ± nJn(z) = ±zJn∓1(z), (3.4)

it follows that the Bessel functions can be written in the form

Jn+k(z) = Jn(z)Rk,n(z) − Jn−1(z)Rk−1,n+1(z) (3.5)

where Rk,n(z) represents a certain polynomial of degree k in 1/z called Lommel’s polynomial
[8]. In particular, when x is a zero of J ′

m(x), direct calculations give

Jm+1(x) = Jm(x)
m

x
, Jm−1 = Jm(x)

m

x
,

J ′
m+1(x) = Jm(x)

(
1 − m(m + 1)

x2

)
, J ′

m−1(x) = Jm(x)

(
−1 +

m(m − 1)

x2

) (3.6)

6
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and

Jm+2(x) = Jm(x)

(
2m(m + 1)

x2
− 1

)
, Jm−2(x) = Jm(x)

(
2m(m − 1)

x2
− 1

)
,

J ′
m+2(x) = Jm(x)

(
2(m + 1)

x
− 2m(m + 1)(m + 2)

x3

)
,

J ′
m−2(x) = Jm(x)

(
−2(m − 1)

x
+

2m(m − 1)(m − 2)

x3

)
.

(3.7)

Using the properties of Lommel’s polynomials or directly applying asymptotic formulae for
the Bessel functions (as in appendix C), one finds that the first terms of semiclassical expansion
of Jp+k , calculated at a zero x of J ′

p, are as follows:

Jp+k(x) = Jp(x)

(
Tk(u) +

1

2x(1 − u2)
[kuTk(u) + (k2(1 − u2) − 1)Uk−1(u)]

)
+ O(x−2)

(3.8)

and

J ′
p+k(x) = Jp(x)

(
(1 − u2)Uk−1(u) − 1

2x
[kuUk−1(u) + k2Tk(u)]

)
+ O(x−2), (3.9)

where u = p/x and Tk(u) and Uk(u) are the Chebyshev polynomials of the first and the
second kind, respectively,

Tk(cos θ) = cos kθ, Uk(cos θ) = sin(k + 1)θ

sin θ
. (3.10)

From these formulae it follows that

ρm∗+k(x
∗)

x∗→∞−→ sin θ tan kθ (3.11)

with cos θ = m∗/x∗, and the last expression is an odd function of k: ρm∗+k(x
∗) = −ρm∗−k(x

∗).
In appendix A, it is shown that this property implies that all (2p + 1) × (2p + 1) determinants
as in (3.3) vanish in the semiclassical limit, implying that their zeros are always close to the
zero of the central element.

For determinants of small size, the first-order correction

x = x∗ +
δx

x∗ (3.12)

can be calculated analytically. For 3 × 3 determinant in (3.3) one obtains that

δx = − u2

(1 − u2)(2u4 − 4u2 + 3)
(3.13)

and for the 5 × 5 determinant

δx = − 4(8u6 − 12u4 + 5u2 + 1)

(1 − u2)(64u8 − 288u6 + 500u4 − 388u2 + 115)
(3.14)

where

u = m∗

x∗ . (3.15)

For example, for the eigenvalue x = 32.503 026 94 represented in figure 2, one has the
following chain of approximations:

• For the determinant 1 × 1, i.e. for the zero of J ′
9(x1) = 0 one has

x − x1 ≈ −0.0022. (3.16)

7
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• For the solutions of 3×3, 5×5 and 7×7 determinants one finds numerically the following
approximations:

x − x3 ≈ −0.0013, x − x5 ≈ −0.000 22, x − x7 ≈ −0.000 038. (3.17)

Such perturbation expansions cannot converge uniformly for two different reasons. First,
although it is reasonable to expect that eigenvalues obtained from such small determinants
give a good approximation to the true eigenvalue (cf (3.17)) for strongly localized states, the
parameter of such an expansion is a pure number of the order of e−λ, where λ is the inverse
of the localization length. Due to considerable fluctuations of the latter, it is difficult to give
a precise a priori bound of the accuracy of such series. Second, starting from the centre of
the localization, the correct boundary conditions—as in (2.4) and (2.5)—are not taken into
consideration. Nevertheless, boundary corrections have to be of the order of e−λδN where δN

is the distance of the centre of the localization to the boundary and can often be ignored for
strongly localized states. In particular, this leads to the almost degeneracy of even and odd
states, which differ only by the boundary values (2.4) and (2.5), which is well confirmed by
numerics. For example, the odd state corresponding to even state in figure 2 has the momentum
x = 32.503 026 89 and the difference between even and odd states equals 5.34 × 10−8.

The above perturbation approach also gives information about the corresponding
wavefunctions. Although for strongly localized states, the coefficients am decay exponentially
from the localization centre, numerically this decrease is not so quick, and the influence of the
first corrections are noticeable.

We now estimate these corrections from the 3 × 3 matrix of (3.3). Simple calculations
reveal that, in the semiclassical limit, the wavefunction has the form (in this approximation)

�(r, φ) ∼ Jm∗(kr) eim∗φ + α(Jm∗+1(kr) ei(m∗+1)φ − Jm∗−1(kr) ei(m∗−1)φ), (3.18)

where m∗ is the position of localization centre and the correction α is given by

α = 1

2(1 − (m∗/x)2)
. (3.19)

The fact that the coefficient in front of the Jm∗−1 term is the opposite of that of the Jm∗+1 term
is not related to the approximation used. From appendix A, it follows that in the semiclassical
limit, when (3.11) is fulfilled, this will always be the case.

To see better the main effect of this correction, we consider the familiar Bessel function
addition theorem [8]. According to this theorem, the Bessel function shifted by a vector ε can
be expanded as follows:

Jm(w) eimψ =
∞∑

n=−∞
Jn(ε)Jm+n(r) ei(m+n)φ, (3.20)

where (r, φ) and (w,ψ) are the polar coordinates of a point with respect to the axis defined
by the direction of the shift ε (see figure 3).

Taking into account only the smallest of ε terms, and using J−n(x) = (−1)nJn(x), one
concludes that

Jm(kw) eimψ ≈ J0(kε)[Jm(kr) eimφ + β(Jm+1(kr) ei(m+1)φ − Jm−1(kr) ei(m−1)φ)], (3.21)

where

β = J1(kε)

J0(kε)
. (3.22)

Comparing this equation with (3.18) we conclude that the most noticeable effect of corrections
is a small shift to the left of the state with m = m∗, the value of this shift being of the order

8
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ε

ψφ

ω
r

Figure 3. Graphical definition of notation for the Bessel function addition theorem (3.20).

Figure 4. Left: wavefunction of the even state with x ≈ 32.503 03 shown in figure 2. Right:
wavefunction �(r, φ) = J9(kr) cos 9φ with kR ≈ 32.505 25 satisfying to Neumann boundary
conditions.

of 1/k. For illustration we present in figure 4 the numerically computed wavefunction
corresponding to the eigenstate shown in figure 2.

To avoid misunderstanding we stress similarities and differences between systems with
strongly localized eigenfunctions, such as the above example, and those with a small
perturbation. At first sight both systems look similar, because in both cases the eigenfunctions
in a certain basis can be represented as a sum with one or a few large components and many
smaller components. Even the spectral statistics is believed to be the same that for a system
with strong localization and is close to Poisson statistics (see e.g. [14] and references therein),
which has been already checked in [2] for our model.

But in perturbative problems there always exists a fixed small parameter (coupling
constant) which determines the construction of the perturbation series as discussed in any
textbook of quantum mechanics.

For systems with localization the situation is different. Here there is no small parameter
and all terms are formally of the same order. The phenomenon of localization is related to
subtle interference between many terms with different phases which stops the wave spreading.
Though perturbation treatment of localization is possible, it requires the summation of all
terms of the perturbation series, as done in Anderson’s famous paper [5]. For this reason the
localization is widely considered as a non-perturbative phenomenon.

The system we discuss is without doubt close to a system with localization. Firstly,
all terms in the recursion relation (2.2) are of the same order and no small parameter

9
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exists. Secondly, it is exactly equivalent to the Anderson model of the one-dimensional
localization, provided that the phases of Bessel functions are considered as (pseudo-)random
variables. Thirdly, numerics such as those presented in figure 2 clearly demonstrate exponential
localization of wavefunctions with localization length equals that of the Lloyd model.

On the other hand, the possibility of a perturbative treatment of the problem discussed
in this section is not general. It is based on the combination of two peculiar properties of
our problem. Firstly, the localization length (2.17) is of the order of 1 for many possible
localization centre positions. This means that the majority of wavefunctions have only one
large component, the others decrease in the mean roughly speaking as 1/3 to the power of the
distance from the localization centre. Secondly, the special properties of Bessel functions, as
summarized in (3.8) and (3.9), are responsible for unusual behaviour such that the corrections
to the main term (3.2) are small, as indicated in (3.12). Therefore, though we do present a
kind of an approximate construction of eigenvalues and eigenfunctions for the system under
consideration, it is heavily based on the localization and cannot be considered as a kind of
perturbation of a quantum integrable system. Nevertheless, it is not excluded that some other
approximative methods like the one developed in [15] may also be applied to such systems.

Finally, we would like to stress the difference between our system and previously studied
billiards showing localization. These include billiard models with rough boundaries [16]
where the eigenfunctions can also be localized, which has even been confirmed by microwave
experiments [17]. The main difference with our case is that in rough billiards the randomness
is explicitly introduced by rough boundaries and the appearance of localized states is natural.
In our case the equation are deterministic, but we nevertheless have localization in momentum
space.

It is the existence of true localization for very simple looking models, without any explicit
random parameters, which from our point of view deserves the name near integrable systems,
as done in [2].

4. Continuous approximation

As the localization length grows when the localization centre m∗ is close to x, the structure of
the wavefunctions in this region differs considerably from the that discussed in the preceding
sections. An example is shown in figure 5. The absence of a sharp localized peak together
with the existence of a flat part between two vertical lines is a characteristic feature of such
a state, clearly differing from the strongly localized state of figure 2. Nevertheless, its eigen-
momentum x = 28.403 536 35 is still close to the lowest zero of J ′

26(x0), at x0 = 28.4181,
the difference being x − x0 = −0.0145.

To explain such behaviour, we use a semiclassical-type approximation based on the fact
that, in the region m ≈ x, the effective ‘potential’ in the discrete Schrödinger equation (2.2),
V (m) = 2ρm(x), is a smooth function of m (see figure 6). When m > x and x → ∞, the
Bessel function Jm(x) can be approximated by an asymptotic expression [8] similar to (2.7):

Jm(x) ≈ 1√
2π

(m2 − x2)−1/4 exp �̃m(x), (4.1)

where

�̃m(x) =
√

m2 − x2 − m ln

(
m

x
+

√
m2

x2
− 1

)
, (4.2)

from which it follows that

ρm(x) ≈
√

m2

x2
− 1 +

x

2(m2 − x2)
. (4.3)

10



J. Phys. A: Math. Theor. 42 (2009) 335102 E Bogomolny et al

0 20 40 60 m
−10

−5

0

5

10

15

20

 ln
(|a

m
|)

Figure 5. Coefficients for an even state with x = 28.403 536 35 (black circles connected by solid
line). Vertical solid line indicates the position of eigen momentum x. The abscissa of the vertical
dashed line equals

√
2x.

This formula agrees well with the exact ρm(x) for large m, except in a region close to m = x,
where the following uniform approximation is useful (see e.g. [8]):

ρm(x) ≈ − Ai′(y)

vAi(y)
, (4.4)

where Ai(y) is the Airy function of argument

y = 1

v
(m − x) (4.5)

and the width v = (x/2)1/3.
In particular, V (m) diverges for m = mp, determined by the closest zero of the Bessel

function, Jmp
(x) = 0. For the choice of x in figure 6, mp ≈ 22.792 70. In the uniform

approximation (4.4),

mp = x − 2−1/3ηx1/3 + O(x−1/3), (4.6)

where η is the modulus of the first zero of the Airy function, η ≈ 2.338.
We thus have the discrete Schrödinger equation

V (m)am = am+1 + am−1 (4.7)

with smooth ‘potential’ V (m) = 2ρm(x). It is therefore natural to look for its particular
solution am in a semiclassical form (see e.g. [21])

am = A(m) ei�(m) (4.8)

with certain smooth functions �(m) and A(m).
From the considerations below it follows that �(m) → ∞ when x → ∞, and am+1 and

am−1 may be approximated as the Taylor series

am+1 ≈ (A(m) + A′(m)) ei[�(m)+�′(m)+ 1
2 �′′(m)], (4.9)

11
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Figure 6. ‘Potential’ 2ρm(x), with ρm(x) given by (2.3) calculated at x = 28.418 07 as a function
of m. The solid line is the semiclassical approximation (4.3), defined only when m > x. The
dashed line indicates the value of energy in the continuous Schrödinger equation (4.15).

and

am−1 ≈ (A(m) − A′(m)) ei[�(m)−�′(m)+ 1
2 �′′(m)]. (4.10)

Equating coefficients in the difference equation (4.7), in this approximation

�′(m) = arccos ρm(x) (4.11)

and

A(m) = 1(
1 − ρ2

m(x)
)1/4 . (4.12)

The oscillating solutions with real �(m) exist when

|ρm(x)| � 1 (4.13)

and values of m, where ρm(x) = ±1, play the role of turning points. Outside the interval
(4.13) one solution is growing and the other is decaying.

Close to the right turning point where ρm(x) ≈ 1, the continuous Schrödinger equation
may be constructed directly from the discrete one (4.7) by expanding am±1 into a series over
the derivatives with respect to m:

am±1 ≈ am ± a′
m + 1

2a′′
m. (4.14)

One then gets the Schrödinger equation(
d2

dm2
+ 2 − V (m)

)
ψ(m) = 0 (4.15)

with ‘wavefunction’ ψ(m) ≡ am(x).
The solutions (4.8) are exact analogues of the usual semiclassical solutions of this

Schrödinger equation, and the matching formulae connecting the decaying solution with

12
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the oscillating one may be obtained in the same way as in the standard semiclassical case (see
e.g. [22]).

We denote

q(m) =
{

arccos ρm(x) when |ρm(x)| � 1

ln(|ρm(x)| +
√

ρ2
m(x) − 1) when |ρm(x)| > 1,

(4.16)

and let m2 be the right turning point i.e. the solution of the equation

ρm2(x) = 1. (4.17)

In the semiclassical limit, m2 can be well estimated from the approximation (4.3)

m2 =
√

2x − 1
2
√

2
. (4.18)

When m > m2, the semiclassical solution which tends to zero when m → ∞ has the form

am ≈ 1

2
(
ρ2

m(x) − 1
)1/4 exp

(
−

∫ m

m2

q(t) dt

)
, (4.19)

and when m < m2, it can be approximated as

am ≈ 1(
1 − ρ2

m(x)
)1/4 cos

(∫ m2

m

q(t) dt − π

4

)
. (4.20)

When m > x and m is not too close to x, one can use semiclassical approximation (4.3) for
ρm(x). For m >

√
2x in the leading approximation, one obtains

am ≈ 1

2(u2 − 2)1/4
exp

[
−x

∫ u

√
2

ln(
√

t2 − 1 +
√

t2 − 2) dt

]
, (4.21)

and for x < m <
√

2x

am ≈ 1

(2 − u2)1/4
cos

[
x

∫ √
2

u

arccos(
√

t2 − 1) dt − π

4

]
, (4.22)

where u = m/x. As expected, the momentum x plays the role of 1/h̄.
The left turning point, m1, is defined by the largest solution of

ρm1(x) = −1. (4.23)

As this point is close to the pole (4.6), it follows that as x → ∞,

m1 ≈ mp + 1 (4.24)

where mp is given by (4.6).
Figure 7(a) shows the result of numerical integration of the semiclassical formulae (4.19)

and (4.20) with the exact potential V (m). The discontinuity close to
√

2x is due to the usual
inapplicability of semiclassical formulas close to turning points. This figure also includes
the values of coefficients am shown in figure 5 on the logarithmic scale. To compare them
with semiclassical formulae, we normalize the am coefficients so that their asymptotics agrees
with (4.19). To achieve this we multiply all am by a factor such that a42 equals the value
predicted by (4.19). The agreement is good, confirming the applicability of the continuous
approximation to describe states localized close to m = x.

Though for the states we describe, many coefficients am are non-zero, the corresponding
wavefunctions are quite simple (cf figure 7(b)). The point is that almost all of these coefficients
correspond to the Bessel functions Jm(x) with m > x, which decay exponentially inside the
circle.

13
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Figure 7. (a) Coefficients am for the state of figure 5, normalized to obey condition (4.19). The
solid lines are semiclassical formulae (4.19) and (4.20) with x = x0. The vertical lines are the
same as for figure 6. (b) Wavefunction of the state shown in figure 5.

The behaviour of am for large m described in this section is not, of course, specific
to states localized with m close to x. Rather, it is evidently generic, and all states have a
similar form for very large m. For example, the state in figure 2 shows clear exponential
localization, but only in the finite interval m < x. In figure 8(a), the same state is plotted over
a larger interval. Starting from m = x, it deviates from pure exponential localization. From
figure 8(b) it follows that its large-m behaviour is well described by the continuous
approximation discussed above.

5. Approximate quantization condition

If our problem were a problem of a particle in a potential well, the semiclassical quantization
condition determining the energy levels inside the well would take the form∫ m2

m1

q(m) dm − π

4
− δ1 = πp, (5.1)

where δ1 is the phase shift associated with the left turning point and p is an integer.
For the discrete equation (4.7), there are two main differences from the standard case.

First, there are no true local bound states. The exact position of the energy levels depends on
the precise behaviour of ρm(x) far from the left turning point. Second, in the usual continuous
Schrödinger equation, the integral of the momentum over the forbidden zone is real, but in our
case, between 0 and m1 it also has an imaginary part equal to π .

Taking into account this additional phase, in this case the approximate quantization
condition has the form∫ m2

m1

q(m) dm + π{mp} − πδ = πp, (5.2)

where mp is the position of the pole (4.6), {f } denotes the fractional part of f , and πδ denotes
the sum of all phases, which we assume to be a slowly varying function of the momentum.

14
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Figure 8. (a) Coefficients am on the logarithmic scale for the same state with x ≈ 32.503 03
as in figure 2, but over a larger interval (black circles). Vertical solid and dashed lines indicate
respectively m = x and m = x

√
2. (b) The same as in (a) but in the usual scale and only for

high m.

As the fractional part of a number differs from that number only by an integer, we can
rewrite the above expression as

mp +
1

π

∫ m2

m1

q(m) dm − δ = P (5.3)

with integer P.
The main term of this approximate quantization condition, when x → ∞, takes the form

x

(
1 +

1

π
I

)
+ g(x) − δ = P, (5.4)

where I is the elliptic integral (B.16)

I =
∫ √

2

1
arccos

√
t2 − 1 dt. (5.5)

g(x) is a function which increases more slowly than x. A few of its low-order terms can be
read from (B.19) in appendix B,

g(x) = − η

24/3
x1/3 +

1

6π
ln x + O(1). (5.6)

The states localized in the region close to x are analogues of extreme whispering gallery states.
For billiards with, say, Neumann boundary conditions, such states are quantized as x ≈ P for
integer P. The above discussion demonstrates that for the problem under consideration these
states are strongly perturbed, and in the strong semiclassical limit they have momentum

x ≈ χP (5.7)

with integer P. Here the factor

χ =
(

1 +
1

π
I

)−1

≈ 0.9. (5.8)
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A physical picture of these states follows. Consider the value of the wavefunction along the
boundary of the circle. According to (2.1),

�(R, φ) =
∑
m

am eimφ. (5.9)

Estimating coefficients am from (4.22), one finds

�(R, φ) ∼
∑
m

cos

[∫ √
2x

m

arccos
(√

(t/x)2 − 1
)

dt − π

4

]
eimφ. (5.10)

Calculating the sum in the saddle point approximation, we obtain that the saddle point, msp,
obeys the equation

cos φ =
√

m2
sp

x2
− 1. (5.11)

Therefore the saddle point exists if

cos φ > 0. (5.12)

When this condition is satisfied, the saddle point is as follows:

msp = x
√

1 + cos2 φ, (5.13)

and a simple calculation shows that when −π/2 < φ < π/2,

�(R, φ) ∼ exp

[
ix

∫ φ

0

√
1 + cos2 f df

]
. (5.14)

This wavefunction corresponds to a local evanescent mode propagating along the boundary

�(r, φ) ≈ exp

[
ix

∫ φ

0

√
1 + cos2 f df − k(R − r) cos(φ)

]
. (5.15)

In general, such waves exist when the boundary function Af (φ) entering the boundary
conditions (1.2) is positive [2].

Taking into account that at points ±π/2, when cos φ = 0, the angular momentum of wave
(5.14) equals x, from continuity one concludes that when cos φ is negative the wavefunction
along the boundary should have the form

�(R, φ) ∼ exp ixφ. (5.16)

As the wavefunction has to be univalued, the quantization condition of such a state is

x

(
π +

∫ π/2

−π/2

√
1 + cos2 φ dφ

)
= 2πP (5.17)

with a certain integer P. From (B.16) and (B.18), it follows that this condition coincides
with (5.4).

6. Trace formula

Usual semiclassical arguments lead to the trace formula

d(E) = d̄(E) + dosc(E), (6.1)

where d̄(E) is the smooth part of the level density and dosc(E) is its fluctuating part.
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From [2, 3], it follows that d̄(E) is given by the following Weyl law (for a circle of radius
R and A = k in (1.2)):

d̄(E) ≈ R2

4
+

R

8πk

∫ 2π

0

[
2√

1 + f 2(φ)
− 1

]
dφ. (6.2)

Due to the dependence of A on k, the mean part of the level counting function, N̄(E), is not
just the integral of d̄(E) as usual, but is slightly different:

N̄(E) ≈ 1

4
(kR)2 +

1

4π
kR

∫ 2π

0
dφ[2(

√
1 + f (φ)2 − f (φ)) − 1]. (6.3)

The fluctuating part of the level density, dosc(E), is given to leading order by the sum over all
periodic orbits (see e.g. [20]):

dosc(E) =
∑

p

Ap

π
√

2πklp
〈Rp〉 ei[klp−μp+π/4] + c.c., (6.4)

where lp is the periodic orbit length, Ap is the area swept by the periodic orbit family, μp

is the phase accumulated due to the caustics, Rp is the total reflection coefficient for a given
periodic orbit equal the product of reflection coefficients in all points of reflection and 〈Rp〉 is
its average value over all initial points.

Periodic orbits for the circle are regular polygons characterized by two integers N and M.
The integer N gives the number of reflections with the boundary, and the integer M determines
the number of full rotations around the origin. For co-prime N and M, the periodic orbit is
primitive. Otherwise, it corresponds to the rth repetition of a primitive periodic orbit where
r = (M,N) is the largest common factor of M and N.

For the circle,

lp = 2RN sin θM,N , Ap = πR2 sin2 θM,N , μp = π

2
N (6.5)

where

θM,N = π
M

N
. (6.6)

For the problem under consideration, each reflection with the boundary corresponds to the
following reflection coefficient [2]:

R = sin θ − i cos φ

sin θ + i cos φ
, (6.7)

where φ is the polar angle of the collision point and θ is the angle between the trajectory and
the tangent at the point of incidence (see figure 9).

For a periodic orbit determined by integers M,N , the total reflection coefficient is the
product of the reflection coefficients for all points of the collisions

Rp(φ) =
N−1∏
n=0

sin θM,N − i cos(φ + 2nθM,N)

sin θM,N + i cos(φ + 2nθM,N)
, (6.8)

where θM,N is given by (6.6) and φ is the polar angle of the initial incident point.
For co-prime M and N, this product is calculated analytically in appendix D, with final

result

Rp(φ) =
⎧⎨
⎩

1 N = 2q

sinh �N − i(−1)q cos φN

sinh �N + i(−1)q cos φN
N = 2q + 1

. (6.9)
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Figure 9. Geometrical reflection from the circle.

Here, � is determined from the equation sinh � = sin θM,N , or

� = ln
(√

1 + sin2 θM,N + sin θM,N

)
. (6.10)

For a repetition of a primitive periodic orbit (i.e. when M = rM0 and N = rN0 with
(M0, N0) = 1), the reflection coefficient is

Rpr = (Rp(φ))r , (6.11)

where Rp(φ) is the reflection coefficient for the primitive orbit determined by M0 and N0.
To calculate the mean reflection coefficient it is necessary to integrate the above formulae

over all initial incidence angles φ:

〈Rpr〉 =
∫ 2π

0
(Rp(φ))r

dφ

2π
. (6.12)

This integral can be calculated analytically for all r:∫ 2π

0
(Rp(φ))r

dφ

2π
= (−1)r + sinh �NP2r−1

(
1

cosh �N

)
(6.13)

where P2r−1(x) is a polynomial of degree 2r − 1 of the variable x = 1/ cosh �N .
In particular, for r = 1, 2, 3, 4,

P1(x) = 2x, P3(x) = −4x3, P5(x) = 12x5 − 8x3 + 2x,

P7(x) = −40x7 + 48x5 − 16x3.
(6.14)

For large odd N and fixed r, the average reflection coefficient is exponentially close to the
Neumann value 1,

〈Rp〉 ≈ 1 − 4r2 e−2�N. (6.15)

For the triangular periodic orbit with N = 3 and M = 1, the average reflection coefficient
is also very close to 1: 〈R3〉 ≈ 0.963 91, but for its repetitions it starts to deviate from
it. For example, for the second, third and fourth repetitions, it has the following values:
0.859 72, 0.698 42 and 0.497 20.

Each term in the oscillating part of the trace formula (6.4) is of the order of k−1/2, which
is the dominant contribution when k → ∞. In general, there exist terms decreasing as higher
power of k. Usually, these are just small corrections to the existing periodic orbit amplitudes
and are rarely taken into account. For example, trace formulae for odd and even states are
slightly different due to mainly the existence of rogue states [2]. These eigenfunctions exist
only for even states and are described by

�(r, φ) = J0(k0r) +
J0(k0R)

J ′
1(k0R)

J1(k0r) cos φ, (6.16)
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Figure 10. Upper curve: oscillating part of the length density. Lower curve: the same but for
Neumann boundary conditions. The arrow indicates additional orbit (6.21).

where k0 is determined from the condition J1(k0R) = 0. Since J ′
0(x) = −J1(x), these states

are the exact analogues of m = 0 states for pure Neumann boundary conditions and, as it is
easy to check, give corrections proportional to k−1 to the diameter orbit and its repetitions
corresponding to lp = 2Rj with integer j . Note that peaks with odd j are absent in the usual
trace formula (6.4) which is typical for desymmetrized systems.

In the problem we consider here the situation is different. The shift of the whispering
gallery mode (5.4) produces unusual peaks in the trace formula. According to (5.4), the level
density of the new levels are given by the formula

d(x) ≡
∞∑

P=−∞
δ(x − xP ) =

∞∑
P=−∞

(
C +

dg(x)

dx

)
δ(P − xC − g(x) + δ), (6.17)

where

C = 1 +
1

π
I = 1

2
+

1

π

∫ π/2

0

√
1 + cos2 φ dφ. (6.18)

Using the Poisson summation formula we conclude that

d(x) =
(

C − η

3(4x)2/3
+

1

6πx

) (
1 + 2

∞∑
r=1

cos(L(x)r)

)
(6.19)

with

L(x) = 2π

(
xC − η

24/3
x1/3 +

1

6π
ln(x)

)
+ O(1). (6.20)

Therefore, in the limit x → ∞ these states correspond to a new periodic orbit with the length
equal to

l = 2πRC ≈ 6.92R. (6.21)

At finite x, the peak associated with this orbit is slightly smaller due to the x1/3 correction
which dies slowly.
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The numerically computed length density of orbits is shown in figure 10. For comparison,
the length density for the Neumann boundary conditions is also represented in the same figure
but, for clarity, with the opposite sign. All the peaks coincide with those of the circle except
the additional one associated with the orbit (6.21) indicated by the arrow. The analysis of the
amplitudes of the peaks (e.g. for the triangular orbit and its repetitions) confirms (6.12).

7. Conclusion

In this paper, we studied properties of a circular quantum billiard with specific boundary
conditions introduced in [2]. Due to the explicit dependence of the boundary conditions
on momentum, the semiclassical limit of this model is unusual and is neither integrable nor
chaotic. Following [2], we denote such systems as near integrable. Their characteristic
property is the strong localization of wavefunctions in the space of azimuthal quantum
numbers. The main reason of such behaviour in this system is the formal analogy between the
recurrence relations for coefficients of the eigenfunction expansion and the one-dimensional
Anderson model. In a sense, our system is similar to kicked systems where the localization
has been established in [13], the role of kicks being played by collisions with the boundary.

The eigenfunction with momentum k can be localized with azimuthal quantum number
m between 0 and kR. States localized far from the boundaries of this interval decay (in the
mean) exponentially from the point of localization with localization length of the order of 1.
Eigen-momenta of these states are close to zeros of the derivative of the Bessel function J ′

m(x)

with m equal the localization centre.
States localized close to the boundaries may deviate from pure exponential localization.

In particular, states having large components with m near kR exponentially decrease only for
smaller m. The large-m behaviour of these states is described by a continuous approximation,
and they have oscillations for m in between kR and

√
2kR, decreasing quickly only for

m >
√

2kR. The possibility of formation of fractal states similar to those investigated in [23]
requires additional study.

Among other consequences of strong localization it is worth mentioning the almost-
degeneracy of states with different symmetries and the Poissonian character of spectral
statistics for energy eigenvalues with the same symmetry.

As for usual quantum dynamical systems, it is possible to write down a semiclassical
trace formula relating the quantum spectrum with the sum over periodic orbits. For the
problem considered, all periodic orbits but one are the same as the integrable case of the
circular billiard with Neumann boundary conditions, but their amplitudes are different due to
a different coefficient of reflection with the boundary. The exceptional orbit is related to a
partially evanescent mode and its length is unusual (see (6.21)).

Though throughout the paper we focus only on a particular example of boundary
conditions (with f (φ) = cos(φ)), our discussion is general and the generalization for other
boundary functions should be straightforward.
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Appendix A. Vanishing of a determinant

Consider the (2p + 1) × (2p + 1) tri-diagonal matrix whose near-diagonal elements equal 1,
and diagonal elements Vn, enumerated consecutively from −p to p, obey

V0 = 0 (A.1)

and

V−n = −Vn for n = 1, . . . , p. (A.2)

The purpose of this appendix is to prove that the determinant of this matrix is zero. To do this,
we show that this matrix always has an eigenvector, an, with zero eigenvalue.

By definition ap+1 ≡ 0, so it is always possible to find quantities an with n = p, . . . , 0
such that the following relations are fulfilled:

an+1 + an−1 + Vnan = 0. (A.3)

Indeed, fixing ap = 1 from these recurrence relations, it follows that ap−1 = −Vp, ap−2 =
Vp−1Vp − 1 and so on, until a certain uniquely defined expression for a0 (related to continued
fractions).

Now consider the same recurrence relation (A.3) but for negative n = −p,−(p −
1), . . . , 0. Because, by assumption (A.2) that V−n = −Vn, one can choose solutions of (A.3)
for negative n in the form

a−n = (−1)nan (A.4)

with an as above.
Due to condition (A.1), the remaining equation (A.3) with n = 0 is also fulfilled, proving

the existence of an eigenvector with zero eigenvalue and the vanishing of the determinant of
the matrix considered.

Appendix B. Effective action integral

The purpose of this appendix is to calculate the integral playing the role of the effective action
for the whispering gallery mode in section 4 for x → ∞:

J (x) =
∫ m2

m1

arccos(ρm(x)) dm. (B.1)

Here, ρm(x) is defined in (2.3), m1 = m1(x) and m2 = m2(x) are solutions of equations

ρm1(x) = −1, ρm2(x) = 1. (B.2)

Their asymptotic values are given by (4.18) and (4.24) correspondingly.
To find the asymptotics of the integral (B.1), we split it into three parts:

J (x) = J1(x) + J2(x) + J3(x). (B.3)

Here J1(x) denotes the integral over the region close to m1 = mp + 1 where ρm(x) can well
be approximated by the pole term

J1(x) =
∫ M1

mp+1
arccos

(
− 1

m − mp

)
dm (B.4)

and M1 − mp 
 1.
J2(x) is the integral over the region far from the pole but close to x where ρm(x) is well

described by the uniform approximation (4.4)

J2(x) =
∫ M2

M1

arccos

(
− Ai′(y)

vAi(y)

)
dm, (B.5)

where y = m−x
v

, v = (x/2)1/3 and M2 is chosen such that x1/3 � M2 − x � x.
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Finally, J3(x) describes the integral over large m where the approximation (4.3) is valid:

J3(x) =
∫ m2

M2

arccos

(√
m2

x2
− 1 +

x

2(m2 − x2)

)
dm. (B.6)

The integral J1(x) is straightforward, and one finds

J1(x) =
∫ M1−mp

1

(
π − arccos

1

u

)
du = π(M1 − mp − 1)

− (M1 − mp) arccos
1

M1 − mp

+ ln(M1 − mp +
√

(M1 − mp)2 − 1). (B.7)

In the limit M1 − mp 
 1, we obtain

J1(x) = π

2
(M1 − mp) + ln(M1 − mp) + ln 2 − π + 1. (B.8)

As v ≡ (x/2)1/3 → ∞ when x → ∞ one can use the expansion arccos(z) ≈ π/2−z in (B.5)

J2(x) =
∫ M2

M1

(
π

2
+

1

v

Ai′

Ai

(
m − x

v

))
dm

= π

2
(M2 − M1) + ln Ai

(
M2 − x

v

)
− ln Ai

(
M1 − x

v

)
. (B.9)

In the second Airy function one can use the approximation

Ai(y) ≈ Ai′(−η)(y + η), (B.10)

where as above −η denotes the first zero of the Airy function, and in the first Airy function it
is possible to use the asymptotic formula

Ai(y)
y→∞−→ 1

2
√

π
y−1/4 exp

(
−2

3
y3/2

)
. (B.11)

Thus one finds

J2(x) ≈ π

2
(M2 − M1) − ln

(
M1 − mp

v

)
− ln[2

√
πAi′(−η)]

− 1

4
ln

(
M2 − x

v

)
− 2

3

(
M2 − x

v

)3/2

. (B.12)

In the integral (B.6) the second term is a small correction and

J3(x) ≈
∫ m2

M2

[
arccos

√
m2

x2
− 1 − x

2
√

2 − m2/x2(m2 − x2)

]
dm. (B.13)

Substituting m = xt ,

J3(x) = x

(∫ √
2

1
−

∫ M2/x

1

)
arccos

√
t2 − 1 dt − 1

2

∫ √
2

M2/x

dt√
2 − t2(t2 − 1)

. (B.14)

After simple transformations we obtain that J3(x) for x → ∞ has the following asymptotics:

J3(x) ≈ Ix − π

2
(M2 − x) +

2

3

√
2

x
(M2 − x)3/2 +

1

4
ln

(
M2 − x

x

)
, (B.15)

where

I =
∫ √

2

1
arccos

√
t2 − 1dt =

√
2E

(
1√
2

)
− π

2
≈ 0.339 3026 (B.16)
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and E(k) is the complete elliptic integral of the third kind,

E(k) =
∫ 1

0

√
1 − k2t2

√
1 − t2

dt. (B.17)

For later use we note that∫ π/2

0

√
1 + cos2 φ dφ =

√
2E

(
1√
2

)
. (B.18)

Combining all the terms together, dependence on M1 and M2 indeed disappears as it should,
and

J (x) ≈ Ix + αx1/3 + 1
6 ln x + β (B.19)

where

α = π

24/3
η ≈ 2.915 016, (B.20)

β = 1 − 5
12 ln 2 − π − 1

2 ln π − ln Ai′(−η) ≈ −2.647 82. (B.21)

Appendix C. Shift of Bessel functions

Assume that y is a root of the derivative of the Bessel function Jp(x),

J ′
p(y) = 0. (C.1)

The purpose of this appendix is to calculate Jp+k(x) at the point x = y, taking into account
two terms of the semiclassical expansion when y → ∞ under the assumption that p/x is
finite but k � x. Our starting point is the asymptotic formula for the Bessel function, slightly
more accurate than (2.7), which can be found e.g. in [8],

Jp(x) =
√

2

π
(x2 − p2)−1/4

[
cos �p(x) +

b1(x)√
x2 − p2

sin �p(x) + O(x−2)

]
(C.2)

where b1 depends only on x/p

b1(x) = 1

8
− 5

24(1 − x2/p2)
, (C.3)

and φp(x) is the same as in (2.8).
Differentiating this expression over x, one finds that its root, y, obeys the equation

sin �p(y) = 1√
y2 − p2

[
b1(y) − y2

2(y2 − p2)

]
cos �p(y). (C.4)

Using the semiclassical expansion of �p+k(x), one gets

�p+k ≈ �p(x) − k arccos
p

x
+

k2

2
√

x2 − p2
. (C.5)

Then

Jp+k(x) ≈
√

2

π
(x2 − (p + k)2)−1/4

[
cos

(
�p(x) − k arccos

p

x
+

k2

2
√

x2 − p2

)

+
b1(x)√
x2 − p2

sin

(
�p(x) − k arccos

p

x

)]
. (C.6)
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Up to the second power of 1/x, this equals

Jp+k(x) ≈
√

2

π
(x2 − p2)−1/4

(
1 +

pk

2(x2 − p2)

) [
cos

(
�p(x) − k arccos

p

x

)

+

(
b1√

x2 − p2
− k2

2
√

x2 − p2

)
sin

(
�p(x) − k arccos

p

x

)]
. (C.7)

Expansion of the trigonometric functions and the definition of y (C.4) leads to equation (3.8).
Using 2J ′

p = Jp−1 − Jp+1 and the recurrence relations for the Chebyshev polynomials
[8],

Pk+1(x) + Pk−1(x) = 2xPk(x) (C.8)

(where Pk(x) stands for the Chebyshev polynomials of the first and the second kind), one may
also obtain equation (3.9).

Appendix D. Reflection coefficient for a periodic orbit

To find the total reflection coefficient for a given periodic orbit characterized by two integers
M and N, it is necessary to calculate the product (6.8)

R(φ) =
N−1∏
n=0

sin θM,N − i cos(φ + 2θM,N)

sin θM,N + i cos(φ + 2θM,N)
(D.1)

where θM,N = πM/N . Denoting z = eiφ, θM,N = θ and R(φ) = R(z), one finds

(−1)NR(z) =
N−1∏
n=0

z2 e4iθn + 2iz sin θ e2iθn + 1

z2 e4iθn − 2iz sin θ e2iθn + 1
. (D.2)

Expanding the quadratic polynomials in the numerator and the denominator into products of
their roots, we obtain

(−1)NR(z) =
N−1∏
n=0

(Yn − iu)(Yn + iv)

(Yn + iu)(Yn − iv)
, (D.3)

where Yn = z e2iθn, u = 1/v and

v =
√

1 + sin2 θ + sin θ. (D.4)

When M and N are coprime integers, all products in the above formula can be reduced to the
following product:

N−1∏
n=0

(t − e2π i/Nn) (D.5)

with a certain value of t. But the last product equals tN − 1, therefore

(−1)NR(z) =
[
(−iz/u)N − 1

(iz/u)N − 1

] [
(iz/v)N − 1

(−iz/v)N − 1

]
. (D.6)

Finally

R(φ) =

⎧⎪⎨
⎪⎩

1 when N = even

sinh �N − i(−1)(N−1)/2 cos φN

sinh �N + i(−1)(N−1)/2 cos φN
when N = odd

(D.7)

where

� = ln
(√

1 + sin2 πM/N + sin πM/N
)
. (D.8)

24



J. Phys. A: Math. Theor. 42 (2009) 335102 E Bogomolny et al

References

[1] Bogomolny E and Schmit C 2004 Structure of wavefunctions in pseudointegrable billiards Phys. Rev.
Lett. 92 244102

[2] Berry M V and Dennis M R 2008 Boundary-condition-varying circle billiards and gratings: the Dirichlet
singularity J. Phys. A: Math. Theor. 41 135203

[3] Sieber M, Primack H, Smilansky U, Ussiskin I and Schanz H 1995 Semiclassical quantization of billiards with
mixed boundary conditions J. Phys. A: Math. Gen. 28 5041

[4] Berry M V 1977 Regular and irregular semiclassical wavefunctions J. Math. Phys. A: Math. Gen. 356 2083
[5] Anderson P W 1958 Absence of diffusion in certain random lattices Phys. Rev. 109 1492
[6] Anderson P W, Thouless D J, Abrahams E and Fisher D S 1980 New method for a scaling theory of localization

Phys. Rev. B 22 3519
[7] Lifshitz I M, Gredeskul S A and Pastur L A 1988 Introduction to the Theory of Disordered Systems (New York:

Wiley)
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